Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary

Multiblock supervised analyses

Should we really normalize blocks?

Hadrien Lorenzo¹, Rodolphe Thiébaut², Jérôme Saracco¹, Olivier Cloarec³

¹ASTRAL, INRIA ²SISTM, INRIA

³Corporate Research Advanced Data Analytics, Sartorius.

SSC17, Aalborg, Denmark, September 8 2021

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
●000	000	00000000	000	00	00000

Supervized Multiblock Analyses in linear context

SSC17	Hadrien Lorenzo	2 / 21
33017	Tiadrien Lorenzo	- /

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
●000	000	00000000	000	00	00000

Supervized Multiblock Analyses in linear context

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
●000	000	00000000	000	00	00000

Supervized Multiblock Analyses in linear context

SSC17	Hadrien Lorenzo	2 / 21
-------	-----------------	--------

Adapt from monoblock supervized analyses

From now on, application to **PLS** Wold (1966) based methodologies.

Adapt classical mono-block analysis such as $\widehat{\mathbf{Y}} = \widehat{\mathbf{B}}\mathbf{X}$.

Different solutions:

- (V0) Westerhuis *et al.* (1998): $\mathbf{X} = [\mathbf{X}_1, \dots, \mathbf{X}_T]$.
- (V1) Wold *et al.* (1996): $\mathbf{X} = [\mathbf{X}_1/\sqrt{p_1}, \dots, \mathbf{X}_T/\sqrt{p_T}].$ • (V2): $\mathbf{X} = [\mathbf{X}_1/\|\mathbf{X}_1\|, \dots, \mathbf{X}_T/\|\mathbf{X}_T\|].$

Remark on the **Block Normalization** solutions (V1) and (V2)

If variables are standardized, $\forall t = 1 \dots T, \|\mathbf{X}_t\|^2 = np_t$

$$\implies$$
 (V1)=(V2)

Supplementary

Real data Application

Idea and drawbacks of block normalization

The idea

Give the same level of confidence to each block, whatever the size of this block.

The idea

Give the same level of confidence to each block, whatever the size of this block.

The chosen solution

Accept the same proportion of block variance from each block: equivalent SNRs (signal to noise ratios).

A problem for correlated blocks

If the interesting variance proportions from blocks are different:

- \mathbf{X}_1 with $p_1 = 20\ 000$ and only 5% of the variance is associated with \mathbf{Y} (Transciptomics, Spectroscopics,...).

A problem for correlated blocks

If the interesting variance proportions from blocks are different:

- \mathbf{X}_1 with $p_1 = 20\ 000$ and only 5% of the variance is associated with \mathbf{Y} (Transciptomics, Spectroscopics,...).

- \mathbf{X}_2 with $p_2 = 200$ and 20% of the variance is associated with \mathbf{Y} (Metabolomics for example).

A problem for correlated blocks

If the interesting variance proportions from blocks are different:

- \mathbf{X}_1 with $p_1 = 20\ 000$ and only 5% of the variance is associated with \mathbf{Y} (Transciptomics, Spectroscopics,...).

- \mathbf{X}_2 with $p_2 = 200$ and 20% of the variance is associated with \mathbf{Y} (Metabolomics for example).

And both associated sub-spaces are correlated.

A problem for correlated blocks

If the interesting variance proportions from blocks are different:

- \mathbf{X}_1 with $p_1 = 20\ 000$ and only 5% of the variance is associated with \mathbf{Y} (Transciptomics, Spectroscopics,...).

- \mathbf{X}_2 with $p_2 = 200$ and 20% of the variance is associated with \mathbf{Y} (Metabolomics for example).

And both associated sub-spaces are correlated.

 $\implies \text{Information from } \mathbf{X}_1 \text{ is hidden by } \mathbf{X}_2 \text{, while} \\ 5\%20 \ 000 = 1000 >> 20\%200 = 40.$

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementar
0000	000	00000000	000	00	00000

A problem for correlated blocks

If the interesting variance proportions from blocks are different:

- \mathbf{X}_1 with $p_1 = 20\ 000$ and only 5% of the variance is associated with \mathbf{Y} (Transciptomics, Spectroscopics,...).

- \mathbf{X}_2 with $p_2 = 200$ and 20% of the variance is associated with \mathbf{Y} (Metabolomics for example).

And both associated sub-spaces are correlated.

 $\implies \text{Information from } \mathbf{X}_1 \text{ is hidden by } \mathbf{X}_2 \text{, while} \\ 5\%20 \ 000 = 1000 \implies 20\%200 = 40.$

Additionnal problem in high dimension

For finite n: large p implies over-fitting of models \implies Do regularization.

SSC17

Hadrien Lorenzo

4 / 21

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

An unified solution ?

Last observation

Adding useless variables to a block would modify the overall prediction model... a nonsense.

To a new methodology ?

What should it combine ?

- Do not normalize (discard arbitrarily weighting).
- Perform variable selection based on variable marginal correlation
- with Y: interpretability and regularization.

 \implies "ddsPLS".

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

"**ddsPLS**", "**PLS**" with different covariance matrix estimators

A sparse PLS where sparsity constraints done at covariance estimation step (denoted as $\mathbf{M}^{(r)}$) and not after:

$$\mathbf{S}_{\lambda}(\mathbf{M}) = \arg \min_{\mathbf{\Sigma} \in \mathbb{R}^{q \times p}} \|\mathbf{M} - \mathbf{\Sigma}\|^2 + 2\lambda |\mathbf{\Sigma}|, \qquad (1)$$

where λ values are tested along a clever grid and S_{λ} is the soft-thresholding operator. Interpretation:

- $\lambda = 0$ corresponds to "PLS" model,
- $\lambda = 1$ corresponds to empty model: empirical mean estimation.

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

"ddsPLS", the algorithm

The algorithms of "PLS" and "ddsPLS" are close to each other:

$$\mathsf{PLS''} \left\{ \begin{array}{c} (a) \left\{ \begin{array}{c} \mathbf{w}_r = \overrightarrow{\mathsf{RSV}} \left(\mathbf{M}^{(r)} \right), \\ \mathbf{v}_r = \overrightarrow{\mathsf{RSV}} \left(\mathbf{M}^{(r)} \right), \\ (b) \mathbf{t}_r = \mathbf{X}^{(r)} \mathbf{w}_r, \\ (c) \mathbf{p}_r = \mathbf{X}^{(r)'} \mathbf{t}_r / \mathbf{t}'_r \mathbf{t}_r, \\ (d) \mathbf{c}_r = \mathbf{Y}^{(r)'} \mathbf{t}_r / \mathbf{t}'_r \mathbf{t}_r, \\ (e) \left\{ \begin{array}{c} \mathbf{X}^{(r+1)} = \mathbf{X}^{(r)} - \mathbf{t}_r \mathbf{p}'_r, \\ \mathbf{Y}^{(r+1)} = \mathbf{Y}^{(r)} - \mathbf{t}_r \mathbf{c}'_r, \end{array} \right. \right. \left\{ \begin{array}{c} (a^{\star}) \left\{ \begin{array}{c} \mathbf{w}_r = \overrightarrow{\mathsf{RSV}} \left(\mathbf{S}_{\lambda(r)} \left(\mathbf{M}^{(r)} \right) \right), \\ \mathbf{v}_r = \overrightarrow{\mathsf{RSV}} \left(\mathbf{S}_{\lambda(r)} \left(\mathbf{M}^{(r)} \right) \right), \\ (b) \mathbf{t}_r = \mathbf{X}^{(r)} \mathbf{w}_r, \\ (c) \mathbf{p}_r = \mathbf{X}^{(r)'} \mathbf{t}_r / \mathbf{t}'_r \mathbf{t}_r, \\ (c) \mathbf{p}_r = \mathbf{X}^{(r)'} \mathbf{t}_r / \mathbf{t}'_r \mathbf{t}_r, \\ (c) \mathbf{p}_r = \mathbf{M}^{(r)'} \mathbf{M}^{(r+1)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r+1)} \mathbf{M}^{(r)} \mathbf{M}^{(r)} \mathbf{M}^{(r)} \mathbf{M}^{(r)} \mathbf{M}^{(r)} \right) \\ (e) \left\{ \begin{array}{c} \mathbf{X}^{(r+1)} = \mathbf{X}^{(r)} - \mathbf{t}_r \mathbf{p}'_r, \\ \mathbf{Y}^{(r+1)} = \mathbf{Y}^{(r)} - \mathbf{t}_r \mathbf{c}'_r, \end{array} \right. \right. \right. \right. \right. \right.$$

"

 Introduction
 Data Driven Sparse PLS ("ddsPLS")
 Simulations
 Real data Application
 Conclusion
 Supplementary

 000
 00
 00
 00
 00
 00
 0000000

"**ddsPLS**", fix the number of components and the regularization coefficients

Two types of parameters:

- Number R of components,
- regularization parameter per component $(\lambda_r)_{r=1...R}$.

Based on B bootstrap operations for each component:

- Minimize $\bar{R}_B^2 \bar{Q}_B^2$ (minimize over-fitting).
- The $\bar{Q}_{B,r}^2$ must be positive (learn from data).
- The \bar{Q}_B^2 is increasing with r (learn something new with the current component).

 \bar{R}_B^2 , \bar{Q}_B^2 and $\bar{Q}_{B,r}^2$ are defined in annex but correspond to R^2 and Q^2 at complete model level or component levels in the context of bootstrap considering empirical mean aggregation.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	●0000000	000	00	00000

Simulation analysis

Challenge "**ddsPLS**" and "**PLS**" in the high dimensional multiblock context in two cases:

- \mathbf{X}_t blocks are associated with the same sub-space of \mathbf{Y} .
- X_t blocks are associated with different sub-spaces of Y.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	0000000	000	00	00000

Benchmark of 5 approaches

Two blocks are available (X_1 and X_2) with $p_1 >> p_2$. Block Y such as q = 1. Five approaches are compared:

- (I): Predict \mathbf{Y} from \mathbf{X}_1 using "PLS",
- (II): Predict \mathbf{Y} from \mathbf{X}_2 using "PLS",
- (III): Predict \mathbf{Y} from $[\mathbf{X}_1, \mathbf{X}_2]$ using "PLS",
- (IV): Predict ${f Y}$ from $[{f X}_1/\sqrt{p_1},{f X}_2/\sqrt{p_2}]$ using "PLS",
- (V): Predict Y from $[X_1, X_2]$ using "ddsPLS",

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

Design 1, Statistical Model

$$y = \phi_{1} + \epsilon$$

$$\forall j = 1 \dots p_{1}, \quad x_{j}^{(1)} = \begin{cases} \phi_{1} + \mu_{j} & \text{if } j = 1 \dots 1 \ 000, \\ \phi_{2} + \mu_{j} & \text{if } j = 1 \ 001 \dots 2 \ 000, \\ \phi_{3} + \mu_{j} & \text{if } j = 2 \ 002 \dots 3 \ 000, \\ \mu_{j} & \text{if } j = 3 \ 001 \dots 20 \ 000, \end{cases}$$
(2)
$$\forall j = 1 \dots p_{2}, \quad x_{j}^{(2)} = \begin{cases} \phi_{1} + \eta_{j} & \text{if } j = 1 \ 001 \dots 20 \ 000, \\ \phi_{3} + \mu_{j} & \text{if } j = 3 \ 001 \dots 20 \ 000, \\ \phi_{2} + \eta_{j} & \text{if } j = 1 \dots 40, \\ \phi_{4} + \eta_{j} & \text{if } j = 81 \dots 120, \\ \eta_{j} & j = 121 \dots 200, \end{cases}$$

•
$$\operatorname{var}(y) = \operatorname{var}(x_j^{(1)}) = \operatorname{var}(x_j^{(2)}) = 1$$
,
• $\operatorname{var}(\phi_1) = \operatorname{var}(\phi_2) = \operatorname{var}(\phi_3) = \operatorname{var}(\phi_4) = \alpha^2 = 0.9$,
• $\operatorname{cov}(\phi_i, \phi_j) = \delta_{i,j}\alpha^2$, $\operatorname{cov}(\phi_i, \epsilon) = \operatorname{cov}(\phi_i, \mu_j) = \operatorname{cov}(\phi_i, \eta_j) = 0$,

Introduction	Data Driven Sparse PLS ("ddsPLS")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

Simulation parameters

- n = 100 sampled N = 100 times.
- An independent test data-set $n_{test} = 1000$.

Remark

"**ddsPLS**" builds always only 1 component (the objective) and "**PLS**" approaches are constrained to build one component.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

MSE on the $n_{test} = 1000$ independent test data set

- (I) and (III) are equivalent: high dimension dominates.
- (II) and (IV) are equivalent: high SNR dominates.
- "ddsPLS" (V) deals with high dimension problem with no arbitrary normalization.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	000000000	000	00	00000

Design 2, Statistical Model

$$y = (\phi_{1} + \phi_{2})/\sqrt{2} + \epsilon$$

$$\forall j = 1 \dots p_{1}, \quad x_{j}^{(1)} = \begin{cases} \phi_{1} + \mu_{j} & \text{if } j = 1 \dots 1 \ 000, \\ \phi_{3} + \mu_{j} & \text{if } j = 1 \ 001 \dots 2 \ 000, \\ \phi_{4} + \mu_{j} & \text{if } j = 2 \ 002 \dots 3 \ 000, \\ \mu_{j} & \text{if } j = 3 \ 001 \dots 20 \ 000, \\ (\phi_{3} + \eta_{j} & \text{if } j = 1 \dots 40, \\ \phi_{3} + \eta_{j} & \text{if } j = 41 \dots 80, \\ \phi_{6} + \eta_{j} & \text{if } j = 81 \dots 120, \\ \eta_{j} & j = 121 \dots 200, \end{cases}$$

$$(3)$$

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

MSE on the $n_{test} = 1000$ independent test data set

- (I) a bit worse than (II) due to SNR.
- (IV) better than (III) hiding X_1 noise due to weighting but cannot properly reconstruct ϕ_1 .
- "ddsPLS" (V) performs better due to regularization and always builds 2 components.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	0000000	000	00	00000

Conclusion over simulations

Performances of traditional normalized multiblock approaches depend on the correlation structure of the data.

It can be wether:

- a relative bad idea (design 1).
- a relative good idea (forgetting high dimensional problem in design 2) but partially hide an important dimension.

In all cases "**ddsPLS**" performs very well in **Prediction**, **Selection** (not shown) and in **Parameter estimation**.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	● ○ ○	00	00000

Batch Evolution Modelling

- 5 Chinese Hamster Ovary (CHO) cell cultures performed on univessels.
- Transcriptomics (**Tr**) and Metabolic (**Me**) profiles acquired at 12 time points.

Hadrien Lorenzo	17 / 2	21
-----------------	--------	----

 Introduction
 Data Driven Sparse PLS ("ddsPLS")
 Simulations
 Real data Application
 Conclusion

 0000
 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

Prediction performances (MSE): 50 repetitions (9/10 train, 1/10 test)

Parameter selection (cross-validation): $R_{(I)} = 4$, $R_{(II)} = 2$, $R_{(III)} = 4$, $R_{(IV)} = 4$. And $R_{(V)} = 2$.

 \mathbf{X}_1 alone is better than $[\mathbf{X}_1, \mathbf{X}_2]$ or $[\mathbf{X}_1/\sqrt{p_1}, \mathbf{X}_2/\sqrt{p_2}]$: \mathbf{X}_1 builds many interesting components through a good SNR.

"ddsPLS" (V) performs slightly better: regularization effect.

SSC17

Supplementary

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

"ddsPLS" performances

Variable selection: Tr 48% and Me 62%. Two components built:

- Dim 1: 97% variance explained.
- Dim 2: 2% variance explained.

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	•0	00000

Conclusion

When to use block normalization ?

- Low and equivalent dimensions from one block to another.
- Independent blocks.
- Equivalent "signal to noise ratio" from blocks to blocks.
- ... so, why using it ?

When to NOT use block normalization ?

- High dimension.
- Different dimensions in different orders of magnitude.
- Dependent blocks.

"ddsPLS" (github.com/hlorenzo/ddsPLS2) selects variables based on their marginal correlations: no need to normalize blocks.

Introduction 0000	Data Driven Sparse PLS (" ddsPLS ") 000	Simulations	Real data Application	Conclusion	Supplementary 00000

Thanks

INRIA & Sartorius & SSC17 Conference Committee

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	0000

Quality criteria

$$\bar{R}_B^2 = \frac{1}{B} \sum_{b=1}^B R_b^2$$
 and $\bar{Q}_B^2 = \frac{1}{B} \sum_{b=1}^B Q_b^2$ (4)

with, for the current bootstrap sample b,

$$R_{b}^{2} = 1 - \frac{\sum_{j=1}^{q} \sum_{i \in \mathsf{IN}(b)} \left(y_{i,j} - \hat{y}_{i,j}^{b}\right)^{2}}{\sum_{j=1}^{q} \sum_{i \in \mathsf{IN}(b)} \left(y_{i,j} - \bar{y}_{j}^{b}\right)^{2}},$$

$$Q_{b}^{2} = 1 - \frac{\sum_{j=1}^{q} \sum_{i \in \mathsf{OOB}(b)} \left(y_{i,j} - \hat{y}_{i,j}^{b}\right)^{2}}{\sum_{j=1}^{q} \sum_{i \in \mathsf{OOB}(b)} \left(y_{i,j} - \bar{y}_{j}^{b}\right)^{2}},$$
(5)

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

Quality criteria (2)

In the same way, bootstrapped versions of R_r^2 and Q_r^2 are given by

$$\bar{R}_{B,r}^2 = \frac{1}{B} \sum_{b=1}^B R_{b,r}^2$$
 and $\bar{Q}_{B,r}^2 = \frac{1}{B} \sum_{b=1}^B Q_{b,r}^2$ (6)

where

$$R_{b,r}^{2} = 1 - \frac{\sum_{j=1}^{q} \sum_{i \in \mathsf{IN}(b)} \left(y_{i,j} - \left(\hat{y}_{i,j}^{b,(r)} - \hat{y}_{i,j}^{b,(r-1)}\right) - \bar{y}_{j}^{b}\right)^{2}}{\sum_{j=1}^{q} \sum_{i \in \mathsf{IN}(b)} \left(y_{i,j} - \bar{y}_{j}^{b}\right)^{2}},$$

$$Q_{b,r}^{2} = 1 - \frac{\sum_{j=1}^{q} \sum_{i \in \mathsf{OOB}(b)} \left(y_{i,j} - \hat{y}_{i,j}^{b,(r)}\right)^{2}}{\sum_{j=1}^{q} \sum_{i \in \mathsf{OOB}(b)} \left(y_{i,j} - \hat{y}_{i,j}^{b,(r-1)}\right)^{2}}.$$
(7)

Variable Selection design 1, "ddsPLS"

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000	000	00	00000

Variable Selection design 2, "ddsPLS"

Introduction	Data Driven Sparse PLS (" ddsPLS ")	Simulations	Real data Application	Conclusion	Supplementary
0000	000	00000000		00	0000●

References I

WESTERHUIS, J., KOURTI, T., & MACGREGOR, J. (1998) Analysis of multiblock and hierarchical pca and pls models. *Journal of Chemometrics*, **12**.

WOLD, H. (1966) Estimation of principal components and related models by iterative least squares. *Multivariate analysis*, 391–420.

WOLD, S., KETTANEH, N., & TJESSEM, K. (1996) Hierarchical multiblock pls and pc models for easier model interpretation and as an alternative to variable selection. *Journal of Chemometrics*, **10**, 463–482.