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Supervized Multiblock Analyses in linear context
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Supervized Multiblock Analyses in linear context
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Adapt from monoblock supervized analyses

From now on, application to PLS Wold (1966) based
methodologies.

Adapt classical mono-block analysis such as Ŷ = B̂X.

Different solutions:

(V0) Westerhuis et al. (1998): X = [X1, . . . ,XT ].
(V1) Wold et al. (1996): X =

[
X1/
√
p1, . . . ,XT /

√
pT
]
.

(V2): X = [X1/||X1||, . . . ,XT /||XT ||].

Remark on the Block Normalization solutions (V1) and (V2)
If variables are standardized, ∀t = 1 . . . T, ||Xt||2 = npt

=⇒ (V1)=(V2)
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Idea and drawbacks of block normalization

The idea
Give the same level of confidence to each block, whatever the size
of this block.
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Idea and drawbacks of block normalization

The idea
Give the same level of confidence to each block, whatever the size
of this block.

The chosen solution
Accept the same proportion of block variance from each block:
equivalent SNRs (signal to noise ratios).
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Idea and drawbacks of block normalization

A problem for correlated blocks
If the interesting variance proportions from blocks are different:

- X1 with p1 = 20 000 and only 5% of the variance is associated
with Y (Transciptomics, Spectroscopics,...).
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Idea and drawbacks of block normalization
A problem for correlated blocks
If the interesting variance proportions from blocks are different:

- X1 with p1 = 20 000 and only 5% of the variance is associated
with Y (Transciptomics, Spectroscopics,...).
- X2 with p2 = 200 and 20% of the variance is associated with Y
(Metabolomics for example).

And both associated sub-spaces are correlated.

=⇒ Information from X1 is hidden by X2, while
5%20 000 = 1000 >> 20%200 = 40.

Additionnal problem in high dimension
For finite n: large p implies over-fitting of models

=⇒ Do regularization.
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An unified solution ?

Last observation
Adding useless variables to a block would modify the overall
prediction model... a nonsense.

To a new methodology ?
What should it combine ?
- Do not normalize (discard arbitrarily weighting).
- Perform variable selection based on variable marginal correlation
with Y: interpretability and regularization.

=⇒ “ddsPLS” .
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“ddsPLS” , “PLS” with different covariance matrix
estimators

A sparse PLS where sparsity constraints done at covariance
estimation step (denoted as M(r)) and not after:

Sλ(M) = argminΣ∈Rq×p ||M−Σ||2+ 2λ |Σ|, (1)

where λ values are tested along a clever grid and Sλ is the
soft-thresholding operator. Interpretation:

λ = 0 corresponds to “PLS” model,
λ = 1 corresponds to empty model: empirical mean estimation.
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“ddsPLS” , the algorithm

The algorithms of “PLS” and “ddsPLS” are close to each other:

“PLS”



(a)
{

wr =
−−→
RSV

(
M(r)

)
,

vr =
−−→
RSV

(
M(r)′)

,

(b) tr = X(r)wr,

(c) pr = X(r)′tr/t′rtr,
(d) cr = Y(r)′tr/t′rtr,

(e)
{

X(r+1) = X(r) − trp′r,
Y(r+1) = Y(r) − trc′r,

“ddsPLS”



(a?)
{

wr =
−−→
RSV

(
Sλ(r)

(
M(r)

))
,

vr =
−−→
RSV

(
Sλ(r)

(
M(r)′))

,

(b) tr = X(r)wr,

(c) pr = X(r)′tr/t′rtr,

(d?)
{

Πr = diag(δ 6=0(vr)j)
cr =

(
Y(r)Πr

)′
tr/(t′rtr).

(e)
{

X(r+1) = X(r) − trp′r,
Y(r+1) = Y(r) − trc′r,
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“ddsPLS” , fix the number of components and the
regularization coefficients

Two types of parameters:

Number R of components,
regularization parameter per component (λr)r=1...R.

Based on B bootstrap operations for each component:

Minimize R̄2
B − Q̄2

B (minimize over-fitting).
The Q̄2

B,r must be positive (learn from data).
The Q̄2

B is increasing with r (learn something new with the
current component).

R̄2
B, Q̄2

B and Q̄2
B,r are defined in annex but correspond to R2 and

Q2 at complete model level or component levels in the context of
bootstrap considering empirical mean aggregation.
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Simulation analysis

Challenge “ddsPLS” and “PLS” in the high dimensional multiblock
context in two cases:

Xt blocks are associated with the same sub-space of Y.

Xt blocks are associated with different sub-spaces of Y.
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Benchmark of 5 approaches

Two blocks are available (X1 and X2) with p1 >> p2. Block Y
such as q = 1. Five approaches are compared:

(I): Predict Y from X1 using “PLS” ,
(II): Predict Y from X2 using “PLS” ,
(III): Predict Y from [X1,X2] using “PLS” ,
(IV): Predict Y from

[
X1/
√
p1,X2/

√
p2
]
using “PLS” ,

(V): Predict Y from [X1,X2] using “ddsPLS” ,

SSC17 Hadrien Lorenzo 10 / 21



Introduction Data Driven Sparse PLS (“ddsPLS” ) Simulations Real data Application Conclusion Supplementary

Design 1, Statistical Model

y = φ1 + ε

∀j = 1 . . . p1, x
(1)
j =


φ1 + µj if j = 1 . . . 1 000,
φ2 + µj if j = 1 001 . . . 2 000,
φ3 + µj if j = 2 002 . . . 3 000,
µj if j = 3 001 . . . 20 000,

∀j = 1 . . . p2, x
(2)
j =


φ1 + ηj if j = 1 . . . 40,
φ2 + ηj if j = 41 . . . 80,
φ4 + ηj if j = 81 . . . 120,
ηj j = 121 . . . 200,

(2)

var(y) = var(x(1)
j ) = var(x(2)

j ) = 1,
var(φ1) = var(φ2) = var(φ3) = var(φ4) = α2 = 0.9,
cov(φi, φj) = δi,jα

2, cov(φi, ε) = cov(φi, µj) = cov(φi, ηj) = 0,
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Simulation parameters

n = 100 sampled N = 100 times.

An independent test data-set ntest = 1000.

Remark
“ddsPLS” builds always only 1 component (the objective) and
“PLS” approaches are constrained to build one component.
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MSE on the ntest = 1000 independent test data set

(I) and (III) are equivalent: high dimension dominates.
(II) and (IV) are equivalent: high SNR dominates.
“ddsPLS” (V) deals with high dimension problem with no
arbitrary normalization.
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Design 2, Statistical Model

y = (φ1 + φ2)/
√

2 + ε

∀j = 1 . . . p1, x
(1)
j =


φ1 + µj if j = 1 . . . 1 000,
φ3 + µj if j = 1 001 . . . 2 000,
φ4 + µj if j = 2 002 . . . 3 000,
µj if j = 3 001 . . . 20 000,

∀j = 1 . . . p2, x
(2)
j =


φ2 + ηj if j = 1 . . . 40,
φ3 + ηj if j = 41 . . . 80,
φ6 + ηj if j = 81 . . . 120,
ηj j = 121 . . . 200,

(3)
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MSE on the ntest = 1000 independent test data set

(I) a bit worse than (II) due to SNR.
(IV) better than (III) hiding X1 noise due to weighting but
cannot properly reconstruct φ1.
“ddsPLS” (V) performs better due to regularization and
always builds 2 components.
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Conclusion over simulations

Performances of traditional normalized multiblock approaches
depend on the correlation structure of the data.

It can be wether:

a relative bad idea (design 1).
a relative good idea (forgetting high dimensional problem in
design 2) but partially hide an important dimension.

In all cases “ddsPLS” performs very well in Prediction, Selection
(not shown) and in Parameter estimation.
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Batch Evolution Modelling

5 Chinese Hamster Ovary (CHO) cell cultures performed on
univessels.
Transcriptomics (Tr) and Metabolic (Me) profiles acquired at
12 time points.

Trn = 52

pTr = 20 373

Me

pMe = 58
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Prediction performances (MSE): 50 repetitions (9/10
train, 1/10 test)

Parameter selection (cross-validation): R(I) = 4, R(II) = 2,
R(III) = 4, R(IV ) = 4. And R(V ) = 2.

X1 alone is better than [X1,X2] or [X1/
√
p1,X2/

√
p2]: X1 builds

many interesting components through a good SNR.

“ddsPLS” (V) performs slightly better: regularization effect.
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“ddsPLS” performances

Variable selection: Tr 48% and Me 62%. Two components built:

Dim 1: 97% variance explained.
Dim 2: 2% variance explained.

Scores versus y... Non linearities ?
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Conclusion

When to use block normalization ?

Low and equivalent dimensions from one block to another.
Independent blocks.
Equivalent “signal to noise ratio” from blocks to blocks.
. . . so, why using it ?

When to NOT use block normalization ?

High dimension.
Different dimensions in different orders of magnitude.
Dependent blocks.

“ddsPLS” (github.com/hlorenzo/ddsPLS2) selects variables based
on their marginal correlations: no need to normalize blocks.
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Quality criteria

R̄2
B = 1

B

B∑
b=1

R2
b and Q̄2

B = 1
B

B∑
b=1

Q2
b (4)

with, for the current bootstrap sample b,

R2
b = 1−

∑q
j=1

∑
i∈IN(b)

(
yi,j − ŷbi,j

)2

∑q
j=1

∑
i∈IN(b)

(
yi,j − ȳbj

)2 ,

Q2
b = 1−

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷbi,j

)2

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ȳbj

)2 ,

(5)
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Quality criteria (2)

In the same way, bootstrapped versions of R2
r and Q2

r are given by

R̄2
B,r = 1

B

B∑
b=1

R2
b,r and Q̄2

B,r = 1
B

B∑
b=1

Q2
b,r (6)

where

R2
b,r = 1−

∑q
j=1

∑
i∈IN(b)

(
yi,j −

(
ŷ
b,(r)
i,j − ŷ

b,(r−1)
i,j

)
− ȳbj

)2

∑q
j=1

∑
i∈IN(b)

(
yi,j − ȳbj

)2 ,

Q2
b,r = 1−

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷb,(r)i,j

)2

∑q
j=1

∑
i∈OOB(b)

(
yi,j − ŷb,(r−1)

i,j

)2 .

(7)
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Variable Selection design 1, “ddsPLS”
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Variable Selection design 2, “ddsPLS”
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