

SÉLECTION DE VARIABLES EN RÉGRESSION SIR (SLICED INVERSE REGRESSION) PAR SEUILLAGE DOUX/DUR DE LA MATRICE D'INTÉRÊT

Hadrien Lorenzo^{1,3} & Jérôme Saracco^{1,2,3} & Clément Weinreich^{1,2}

¹ ASTRAL Team, Inria, Talence ³ OptimAl team, IMB, CNRS UMR 5251

Tuesday June 16th 2022

SIR, a semi-parametric model

Theoretical context: The semi-parametric single index model from Duan and Li 1991 as

$$y = f(\beta' x) + \epsilon \tag{1}$$

where:

- y is a univariate response variable,
- $x \in \mathbb{R}^p$, covariates, such as $\mathbb{E}(x) = \mu$ and $\mathbb{V}(x) = \Sigma$,
- $ightharpoonup \epsilon$ is independent of x,
- ▶ *f* the link function and $\beta \in \mathbb{R}^p$ the euclidean parameter are unknown.

f being unknown, β is not fully identifiable.

However, it is possible to estimate the space generated by β , called EDR (Effective Dimension Reduction) space.

Note: The model (1) can be generalized to a non-additive and heteroscedastic noise.

Estimation of the EDR space and f

The estimation of the SIR model involves 2 steps:

Estimation of the EDR space

$$\Gamma = \mathbb{V}\left[\mathbb{E}\{x|T(y)\}\right] = \sum_{h=1}^{H} p_h(m_h - \mu)(m_h - \mu)'$$

- ► T a slicing function which cuts the Y support into H slices
 {s₁,...,s_H}
- ▶ $p_h = P(Y \in s_h)$ and $m_h = \mathbb{E}[X \mid Y \in s_h]$,
- ► The principal eigenvector of $\Sigma^{-1}\Gamma$, denoted $b \in \mathbb{R}^p$, is an EDR direction.
- \Longrightarrow The principal eigenvector \hat{b}_{SIR} of $\hat{\Sigma}^{-1}\hat{\Gamma}$ is an estimated EDR direction. This estimation, suffers from the curse of dimensionality.

Estimation of f

Use of a non-parametric kernel estimator on $(y, \hat{b}'_{SIR}x)$.

Soft thresholding

Figure: Soft thresholding

$$S_{\lambda}(x) = sign(x) \times \begin{cases} |x| - \lambda & \text{if } |x| - \lambda > 0, \\ 0 & \text{else.} \end{cases}$$
 (2)

Soft thresholding: continuity, but bias for high values.

4 / 18

Hard thresholding

Figure: Hard thresholding

$$H_{\lambda}(x) = \begin{cases} x & \text{if } |x| - \lambda > 0, \\ 0 & \text{else.} \end{cases}$$
 (3)

Hard thresh.: no bias for high values, but discontinuity.

ST-SIR and HT-SIR estimators

- $\hat{b}_{ST-SIR}(\lambda)$: principal eigenvector of $S_{\lambda}(\widehat{\Sigma}_{n}^{-1}\widehat{\Gamma}_{n})$.
- $\hat{b}_{HT-SIB}(\lambda)$: principal eigenvector of $H_{\lambda}(\hat{\Sigma}_{n}^{-1}\hat{\Gamma}_{n})$.

The choice of the thresholding hyper-parameter λ must provide a balance between

- correct variable selection.
- low distortion of the estimated direction \hat{b}_{SIR} too much.

 $\hookrightarrow \hat{\lambda}_{opt} \implies$ selection of \hat{p}^* selected variables.

6/18

Appendix

Before variable selection...

- \hat{b}_{SIR} : SIR estimator based on the *p* variables.
- $\hat{b}_{HT-SIR} := \hat{b}_{HT-SIR}(\hat{\lambda}_{opt-HT}).$
- $\hat{b}_{ST-SIR} := \hat{b}_{ST-SIR}(\hat{\lambda}_{opt-ST}).$

... after variable selection

- 1. Consider the \hat{p}^* selected variables (based on $\hat{\lambda}_{opt-ST}$)).
- 2. \hat{b}_{SIR}^{\star} : estimated EDR direction using the "reduced" SIR model based on the selected \hat{p}^{\star} variables.

The SIR model

Example: the simulated regression model

$$y=(x'\beta)^3+\epsilon,$$

- ▶ $\beta = (1, ..., 1, 0, ..., 0)' \in \mathbb{R}^p$, here p = 20 and $p^* = 10$
- $\rightarrow x \sim \mathcal{N}(0, \mathbb{I}_p)$
- $ightharpoonup \epsilon \sim \mathcal{N}(0, 10)$ and $\epsilon \perp \!\!\! \perp x$.

Figure: Sample size n=300, Noise to signal ratio = 0.1

Simple case: comparison between HT-SIR and ST-SIR

(a) HT-SIR

(b) ST-SIR

Appendix

Overall results for that case

HT-SIR and ST-SIR, similar results in selection:

- $\hat{p}^* = 10$ variables selected over the p = 20 variables.
- List of the $\hat{p}^* = 10$ selected variables : X1, X2, X3, X4, X5, X6, X7, X8, X9, X10

Very good estimation of the EDR direction:

- $ightharpoonup cos^2(\beta, \hat{b}_{HT-SIR}) = 0.98$
- $\sim \cos^2(\beta^*, \hat{b^*}_{SIR}) = 0.99$

Simulation plan

The SIR model

Same regression model: $y = (x'\beta)^3 + \epsilon$

- $\beta = (1, ..., 1, 0, ..., 0)' \in \mathbb{R}^p$
- $\triangleright x \sim athcalN(0, \mathbb{I}_n)$
- $ightharpoonup \epsilon \sim \mathcal{N}(0, 10)$ and $\epsilon \perp \!\!\! \perp x$.

Simulations with various values of (n, p, p^*) :

- $n \in \{200, 300, 500\}$
- ightharpoonup p and p^* so that $\frac{p^*}{p} = \frac{1}{5}$

$$\hookrightarrow$$
 $(p, p^*) \in \{(25, 5), (50, 10), (100, 20)\}$

Noise to Signal ratio: $\mathbb{V}(\epsilon)/\mathbb{V}(y) \in \{0.1, 0.01\}$

N = 100 replications considered for each case.

Simulations with n = 500, p = 25, $p^* = 5$, NTS ratio= 0.1 Comparison of \cos^2

Simulations with n = 500, p = 25, $p^* = 5$, NTSratio= 0.1 Selection performances

(a) Size of the reduced model

(b) Variables selected in the reduced model

Increase p from 25 to 50 and p^* from 5 to 10

Comparison of cos²

Increase p from 25 to 50 and p^* from 5 to 10

Selection performances

(a) Size of the reduced model

(b) Variables selected in the reduced model

Decrease *n* from 500 to 300

Comparison of cos²

Decrease *n* from 500 to 300

Selection performances

(a) Size of the reduced model

(b) Variables selected in the reduced model

Concluding remarks

- No significant difference in variable selection between HT-SIR and ST-SIR.
- ▶ Efficient for p < n for the two approaches.
- Bootstrap could stabilize the results and make them more robust (under investigation).
- Other thresholding methods (such as SCAD) could also offer interesting results (under investigation)
- ► An R package is under development!

The SIR model Thresholdings Example Simulations Conclusion References Appendix

References I

Duan, N. and K.-C. Li (1991). "Slicing regression: a link-free regression method". In: *The Annals of Statistics* 19, pp. 505–530.

The SIR model Thresholdings Example Simulations Conclusion References Appendix

Appendix

Choose the optimal lambda - Exemple 1

Figure: Index of the lambda from which the variable i is useless