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Context

rVSV-ZEBOV Ebola Vaccine phase I dose escalation trial

I First vaccine to show efficiency during the Ebola
outbreak [Henao-Restrepo et al., The Lancet, 2017 ],

Hamburg vaccination dataset content

I 3 types of responses :

Antibody response Cellular functionnality Genomic expression
I 18 participants divided in 2 vaccination groups :

3 ¨ 106pfu 20 ¨ 106pfu
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System vaccinology approach to examine the early
innate immune response to Ebola rVSV vaccine,
see [Rechtien et al., Cell reports, 2017 ]
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rVSV -ZEBOV Ebola Vaccine phase I datasets
3 blocks of longitudinal data

Antibody
response

Days 28, 56, 84, 180

Cellular
fonctionnality

Days 0, 1, 3, 7

Genomic
expression

Days 0, 1, 3, 7

Genomic expression analysis : high dimensional problem

n “ 18, p “ 18301,T “ 4

T : number of time measurement or ”ways” ùñ multiway
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Missing origins

Poor sample qualities in case of :
I Low RNA integrity number (RIN)
I Insufficient library concentration
I Low sequencing depth

7 5 9 1 15 10 14 4 2 12 17 16 8 18 13 11 3 6

t1
t2
t3
t4

Table: Missing path in the Ebola rVSV-ZEBOV RNA-Seq dataset where
t1 “ day0, t2 “ day1, t3 “ day3 and t4 “ day7. Columns for participants.

Preliminar observations

I 30% of missing samples/values,
I Missing structure, parallel to time structure

ùñ

ùñ Missingness structure
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Related & imagined methods
I S/RGCCA, from [Tenenhaus and Tenenhaus, 2011 ] :

Multiway (Canonical Correlation) Regul. L2, L1 No imputation
Applications : MRI Imaging, micro-array, heterogeneous datasets

I softImpute [Hastie et al., 2015 ] :
Uniway (PCA) Regul. L2 Imputation
Applications : Netflix (17770ˆ 480189, 99% of NA)

I imputeMFA in missMDA [Husson and Josse, 2013 ] :
Multiway (WPCA) Regul. L2 automatic Imputation
Applications : Sensory datasets
The authors : Efficient on highly correlated datasets.

Our objectives and the chosen solutions

I Dimension reduction ùñ multi-axes method,

I Link the latency variables ùñ covariance criterion,

I Accuracy in prediction and interpretability ùñ Lasso,

I Include Differential Expression (DE) information ùñ weighted Lasso.
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Objective criterion approximation formulation

Approximed chosen criterion in semi-lagrangian notation

minimize
pxtqtPv1,Tw

ÿ

tPv1,Tw,sąt

1
2
||

X‹t
T

σ1pX‹t q
X‹s

σ1pX‹s q
´ xtxT

s ||
2
F

`
ÿ

tPv1,Tw

λt

2
p||xt ||

2
2 ´ 1q ` µtp||Dpθ,X‹qxt ||1 ´ ηtq

s.t. @t P v1,Tw,
ηt “ arg min

ηPR`,||xt ||0ďkeepX

absp||Dpθ,X‹qxt ||1 ´ ηq
,

pλt , µtq ą 0

θ Ps0, 1s a parameter giving importance to DE genes (θÑ 0`) or no
importance (θ “ 1).
T the number of ways/time
measurements,
X‹ “ pX‹

t qt“1..T the imputed matrices,
σ1p.q the largest eigenvalue of ”.”,

keepX the max number of genes to keep,
D diagonal matrix with weights giving
power to the DE genes.
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Simulations

Principle of the simulations

d groups of variables, @j P 1..d, pj : number of variables in group j.

Way 1
hkkkkkkkkikkkkkkkkj

♣ ¨ ¨ ¨♣
loomoon

Group 1

¨ ¨ ¨ ♠ ¨ ¨ ¨ ♠
loomoon

Group d

Ways 2 to T-1
hkkikkj

‚ ¨ ¨ ¨ ‚

Way T
hkkkkkkkkikkkkkkkkj

p ¨ ¨ ¨p
loomoon

Group 1

¨ ¨ ¨ s ¨ ¨ ¨ s
loomoon

Group d

,

I Inter-way correlation coefficients :
pρjqj“1..d .

I Intra-way correlation structure :
ARp1q with coefficient ρt .

Example :
T “ 3, d “ 4, pj “ 40, ρj “ 0.8, ρt “ 0.5
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Simulations

Comparisons with SoftImpute, missMDA and Mean
imputation in a high-dimensional context n ăă p

Fix T “ 3, d “ 4, n “ 200, pj “ 400p ùñ p “ 1600q, with criterion

RMSE “ fppropNA , ρj “ 0.3, ρt “ 0.3q

Our Method limits errors, equivalent to Mean.
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Simulations
Comparisons with SoftImpute, missMDA and Mean
imputation in a high-dimensional context n ăă p

Fix T “ 3, d “ 4, n “ 200, pj “ 400p ùñ p “ 1600q, with criterion

RMSE “ fppropNA , ρj “ 0.3, ρt “ 0.9q

Mean is wronger than others except for high missing values where
softImpute is the worst.

All methods seem to learn from temporal structure.
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Simulations

Comparisons with SoftImpute, missMDA and Mean
imputation in a high-dimensional context n ăă p

Fix T “ 3, d “ 4, n “ 200, pj “ 400p ùñ p “ 1600q, with criterion

RMSE “ fppropNA , ρj “ 0.9, ρt “ 0.3q

Our Method and Mean did well in comparison to the other methods.
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Analysis of rVSV-ZEBOV RNA-Seq dataset, 1st axis,
Leave-One-Out on pkeepX , θq

Leave−One−Out for the first component, 
 Means of the RMSE

Number of genes selected
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XIST RPS4Y1
ZFY LINC00278

PRKY TTTY15
USP9Y DDX3Y

UTY ANOS2P
TTTY14 BCORP1
TXLNGY AC010889.1
KDM5D EIF1

Minimum for keepX “ 16, detectable using θ parameter.

Genes linked to the sex and not to the vaccination.
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Analysis of rVSV-ZEBOV RNA-Seq dataset, 2nd axis,
Leave-One-Out on pkeepX , θq no minimum

Leave−One−Out for the first component, 
 Means of the RMSE
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2.0 Take θ “ 5 ¨ 10´3

and keepX “ 9 for
observations.

Genes reacting to vaccination are selected, cf [Rechtien et al., Cell
reports, 2017 ]
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Conclusion

I Ongoing work,
I Method able to learn from intra-time and longitudinal structure,
I Selection based on a trade-off between correlation and

differential expression,
I Add other datasets for data-heterogeneous analysis.

hadrien.lorenzo@u-bordeaux.fr
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Algorithm

The algorithm use is a alternating least square algorithm with
soft-thresholding solution to the Lasso constraint.
The imputation is performed based on linear regression on the projected
matrices such as, where @t P 1..T ,Zt “

X‹t
σ1pXtq

:

Zt “ ZtxtxT
t ` ZtpIp ´ xtxT

t q, (1)

and ZtxtxT
t can be approximated with the actual estimations of pxsqs,t

ZtxtxT
t “

T
ÿ

s“1,s,t

βt ,sZsxsxT
s ` ε, (2)

where @pt , sq, βt ,s P R and ε is a matrix with a norm negligeable against
Z‹t xtxT

t .
Scalar projections onto @s , t , xs permits to estimate each βt ,s .
X‹t is then uploaded with the estimated values but only the missing
values are changed. A normalization is then applied to restart the
algorithm if the criterion is not small enough.
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Weighted Lasso

@g P v1,Gw, dg “ θ ` p1´ θqγg, (3)

γg “ 1´
DEg

maxhPv1,GwpDEhq
, (4)

DEg “

sąt
ÿ

t ,s“1..T

|pµ
ptq
g ´minhPv1,Gwpµ

ptq
h qq ´ pµ

psq
g ´minhPv1,Gwpµ

psq
h qq|,

(5)
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Figure: Lasso and weighted Lasso behavior representations
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Simulations

Comparisons with SoftImpute, missMDA and Mean
imputation in a high-dimensional context n ăă p

Fix T “ 3, d “ 4, n “ 200, pj “ 400p ùñ p “ 1600q, with criterion

RMSE “ fppropNA , ρj “ 0.9, ρt “ 0.7q

All methods seem to learn from temporal structure, even better since ρj is
high. Divergence for softImpute for high proportions of missing values.
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Simulations
Comparisons with SoftImpute, missMDA and Mean
imputation in a high-dimensional context n ăă p

Fix T “ 3, d “ 4, n “ 200, pj “ 400p ùñ p “ 1600q, with criterion

RMSE “ fppropNA , ρj “ 0.9, ρt “ 0.9q

missMDA is the most efficient method, especially in the large proportion
of missing values.

All methods seem to learn from temporal structure.
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Genes selected along the first component
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Genes selected along the second component
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GSTM1, selected at day(s) : (0,7)
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CYP26B1, selected at day(s) : (0,1,7)
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CXCL10, selected at day(s) : (0,1,3,7)
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NOP56P1, selected at day(s) : (0,7)
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NOP56P3, selected at day(s) : (0,3,7)
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CCL2, selected at day(s) : (0)
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CCL8, selected at day(s) : (0,1,3,7)
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AL589843.2, selected at day(s) : (1)
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●●●●●
●●●●● ●●● ●●●

−5

0

5

10

0 1 3 7

day

E
xp

re
ss

io
n sex

●

●

female

male

AL365357.1, selected at day(s) : (1)
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LINC02068, selected at day(s) : (3)
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BTNL3, selected at day(s) : (3)
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AC092028.1, selected at day(s) : (3)
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HBG2, selected at day(s) : (3)
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GRIK4, selected at day(s) : (3)
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LAMP3, selected at day(s) : (3)
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AC007991.4, selected at day(s) : (7)
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AC245369.1, selected at day(s) : (7)
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