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ddsPLS: A Package to Deal with
Multiblock Supervised Problems with
Missing Samples in High Dimension
by Hadrien Lorenzo, Jérôme Saracco and Rodolphe Thiébaut

Abstract The ddsPLS method considers regression and classification problems in the context of
multiblock structured covariate data sets taking into account missing samples. The response outcome
can be multidimensional and constitutes the response block. Multiblock covariate data sets are
constituted by heterogeneous types of data (e.g. generated by various bioassays) and/or temporal
realisations of the same covariates. The ddsPLS approach only deals with a specific case of missing
values, denoted as missing samples, which means that some individuals have missing values for all
the covariates in a given block. The ddsPLS method performs imputation of missing data, covariate
selection and prediction of the response. The method is based on singular value decompositions of
soft-thresholded covariance blocks via a three-steps procedure. The tuning parameters of the ddsPLS
method can be optimized through an available cross-validation procedure. The ddsPLS package is
illustrated on a real data set.

Introduction

Analyzing high dimensional data where the number of predictors is much higher than the number
of statistical units (e.g. individuals) is challenging in mathematical and practical point of views.
Regularization solutions, such as the regularization model introduced by Tikhonov and Arsenin and
translated by Willoughby (1979), show theoretical and also practical solutions to the high dimension
problem. To introduce sparsity in the models, Tibshirani (1996) has developed a regularization method
named Lasso, close in form to the Tikhonov solution. Putting to 0 the coefficient associated with
unimportant covariates allows the selection of the most relevant covariates and thus improve the
interpretability of the model.

The Lasso method has been adapted to high correlation structured data sets thanks to the Elastic-
Net model by Tibshirani (1996). It has also been adapted to grouped data sets, i.e. when the covariates
can be divided in a priori meaningful groups leading to the so-called group-Lasso and sparse group-
Lasso methods (see Bakin, 1999; Simon et al., 2013). However, those methods only consider an
unidimensional response variable.

Multiple response predictions can be performed with PLS (Partial Least Squares) which is in-
troduced by Wold et al. (2001). PLS methods work with covariance structures using singular value
decompositions, denoted as SVD in the following. Their flexibility allows to develop multiblock
covariate typed methods such as the multiblock PLS algorithm, denoted as MBPLS, and developped
by Wangen and Kowalski (1989). Then, using classical regularization approaches, a sparse version
of the PLS has been proposed by Lê Cao et al. (2008) using Lasso and by Liquet et al. (2015) using
group Lasso. Multiblock methods with regularization and covariate selection have been generalized
through RGCCA and SGCCA (see Tenenhaus and Tenenhaus, 2011; Tenenhaus et al., 2014) and gather
canonical correlation analyses and PLS methods in a regularized general framework. The package
RGCCA implements different solutions associated with that context.

Missing values occur for numerous reasons. Here, we consider the simplest case referred as MCAR
(Missing Completely At Random), as detailed by Rubin (1976). In that context, no association exists
between the missing probability of a realization and any measured or unmeasured covariate. An
usual approach to deal with missing data in such context is to remove units/individuals with missing
information. Even if not biased, this complete case analysis shrinks the statistical power and must not
be used such as shown in Josse et al. (2009). Obviously, the issue is even more pronounced when the
number of samples is low. Another approach is to complete missing data by imputation. The model
for imputation could be very simple such as the imputation of the same fixed value for all missing
observations based on the mean or the median of observed values. This leads to hard modifications of
the covariance structures (Schafer and Graham, 2002) and should therefore be avoided. The alternative
is to use the information carried by the observed covariates to drive the imputation of missing data.
Since the imputation itself modifies the covariance structure, it is reasonable to consider iterative
methods, close to the EM (Estimation-Maximization) algorithm described by Dempster et al. (1977).
Those EM-typed methods give valid results in the context of imputation as detailed in Mazumder et al.
(2010) for the SVD of very large matrices with sparse structure and a large proportion of missing values.
The R package softImpute (Hastie and Mazumder, 2015) allows to use that method. Stekhoven and
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1Figure 1: A multiblock data set, of T blocks, where missing values are represented by red areas. n
is the number of samples, q is the number of variables in the response matrix and (pt)t∈[[1,T]] are the
number of covariates in each covariate block.

Bühlmann (2011) have developed an EM-typed algorithm for random forest objects implemented in the
missForest package. For unsupervised analyses, Josse and Husson (2012) have proposed a regularized
PCA (Principal Component Analysis) which imputes missing values through an EM approach. The
missMDA (see Josse and Husson, 2016) package allows to use that method to multiblock data sets,
through the imputeMFA() function. The task view MissingData gives more examples of packages doing
imputation.

The CMTF (Collective Matrix Tensor Factorization) problem (see for example Acar et al., 2011, 2013)
has been designed to deal with heterogeneous problems where a collection of matrices sharing the
same structure (which is called a tensor) and an objective matrix (Y in our case) share a common
description of the same individuals. The CMTF-WOPT algorithm (CMTF-Weighted Optimal Collective
Matrix Tensor Factorization) is a modification of CMTF which allows to deal with missing values in the
collection of covariate matrices by ignoring missing values in the data structure estimation.

The ddsPLS package (data-driven sparse Partial Least Squares) proposes an EM-typed algorithm
dedicated to multiblock supervised for classification or multivariate regression taking into account
missing samples in the covariate part and also providing covariate selection in order to predict the
response part. Figure 1 shows the context of application of the method for a T covariate blocks
measured on the same n samples where each block t ∈ [[1, T]] describes each sample with pt ∈ N?

covariates. The response block Y contains q ∈N? response variables measured on the same n samples.
The ddsPLS approach only deals with a specific case of missing values (which often occurs in health
data problems), denoted as missing samples, which means that some individuals have missing values
for all the covariates in a given block. In Figure 1, red areas correspond to missing samples.

That package has been used through three applications presented in Lorenzo et al. (2019a,b);
Ellies-Oury et al. (2019).

The ddsPLS method needs to fix two regularization parameters (the number R of components to
retain, and the maximum number L0 of covariates to consider in prediction). Cross-validation can be
used to determine those parameters from the available data and a function has been implemented to
perform such optimization.

The ddsPLS package is based on three S3 classes which are

• the class "mddsPLS" provides regression or classification pieces of information of a prediction
model (including imputation),

• the class "perf_mddsPLS" gathers cross-validation results,

• the third class "MddsPLS_core" is never directly built by the user but in each object of the class
"mddsPLS", an attribute is an object of the class "MddsPLS_core".

Their associated S3 methods are detailed in Table 1.

In the following, the ddsPLS method is briefly presented. Then, the main functions associated with
"mddsPLS" (estimation/imputation, prediction) and "perf_mddsPLS" (cross-validation to tune both of
the parameters of the model) classes are described and illustrated on a real data set in a regression
context. No example of classification analysis is provided but the last section provides key indications
to perform this type of analyses.

Brief description of the ddsPLS method

The ddsPLS method is able to impute missing samples (in covariate blocks) in a supervised context
(regression or classification), to estimate the underlying model and to make predictions. A full
description of the ddsPLS method is available in Lorenzo et al. (2019b).

The ddsPLS method only needs two parameters to be tuned by the user:
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Object Type Accessible Description

"MddsPLS_core" S3 class No The core function
of the mddsPLS class.

"mddsPLS" S3 class Yes Main class.
plot.mddsPLS() S3 method Yes The plot method
predict.mddsPLS() S3 method Yes The predict method.
summary.mddsPLS() S3 method Yes The summary method.

"perf_mddsPLS" S3 class Yes Function to estimate cross
-validation performances.

plot.perf_mddsPLS() S3 method Yes The plot method
summary.perf_mddsPLS() S3 method Yes The summary method.

Table 1: Main functions of the ddsPLS R package

• the number of components R ∈ [[1, min(n, p, q)]], equivalent to the number of components in
PLS or PCA,

• the regularization parameter which can be controlled through one of the following two parame-
ters, depending on user’s choice:

– λ ∈ [0, 1] – lambda in the software – which corresponds to the minimum value of the
correlation between a covariate and a response variable to take into account in the model,

– L0 ∈ [1, p] – L0 in the package – which represents the maximum number of covariates to
be include in the model.

Those parameters (R, λ) or (R, L0) can be optimally determined by cross-validation through the
"perf_mddsPLS" class.

For given values of these two parameters, the class "mddsPLS" builds the corresponding model
(including imputation of missing samples), and this model can then be used for predictions.

Notations

Let us consider a multiblock data set built on T blocks (X1, · · · , XT) with the additional response
block, Y, that supervises the analysis. Given any block t ∈ [[1, T]] and a number R of built components,
let us define

• Mt = Sλ

(
YT X
n−1

)
∈ Rq×pt , the soft-thresholded covariance matrix between the response block

Y and the covariate block Xt, where Sλ : x → sign(x) (|x| − λ)+ is the soft-thresholding
function.

• λ ∈ [0, 1], the regularization coefficient, which can also be parameterized through the L0
parameter. L0 corresponds to the number of columns of

Sλ

(
YT [X1, · · · , XT ]

n− 1

)
that must be put to 0 with the lowest value of λ (the smallest degree of regularization).

• Ut = SVDR(Mt) ∈ Rpt×R the weight matrix where ”.→ SVDR(.)” gives the R right singular
vectors associated with the R largest singular values.

• Z = [M1U1, · · · , MTUT ] ∈ Rq×R, the concatenation of the projected soft-thresholded covari-
ance matrices.

• β = SVDR(Z) ∈ RRT×R, the super-weights per block per axis concatenated per row. Defining

also β =
[

βT
1 , · · · , βT

T

]T
, where βt ∈ RR×R.

• U?
t = Utβt ∈ Rpt×R, the scaled super-weights per block.

• Tt = XtUt ∈ Rn×R, the scores per block per axis.
• T? = ∑T

t=1 XtU?
t ∈ Rn×R, the super-scores.

• V? = norm2(Zβ) ∈ Rq×R, the weights of the response, where the function ”. → norm2(.)”
returns the columns normalized to a L2-norm equal to 1 if the corresponding column is non
null and returns the null-column otherwise.

• S? = YV? ∈ Rn×R, the super-scores of the response.
• B = (Bt ∈ Rpt×q)t∈[[1,T]] the list of regression matrices per block.
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The imputation algorithm

For a given couple of tuning parameters (R, λ), the algorithm denoted as Koh-Lanta is an EM-typed
algorithm applying the following three-steps procedure to the complete data set

• STEP 1: solve independently the T mono-block ddsPLS problems based on Xt and Y. This allows
to calculate, (Ut)t∈[[1,T]] and T.

• STEP 2: combine information from the T blocks. This allows to calculate β, ∀t ∈ [[1, T]] U?
t , V?,

T? and S?.

• STEP 3: predict Y using a regression model based on the T blocks. This allows to calculate,

∀t ∈ [[1, T]], Bt = U?
t B0V?T , where B0 =

(
T?TT?

)+
T?TS? is the linear regression matrix of S?

on T? estimated through minimization of OLS (Ordinary Least Squares, see Kenney and Keeping,
1962, for example) and ”. → (.)+” denotes the Moore-Penrose pseudo-inverse operator (see
Planitz, 1979).
The objective regression model is

Y ≈
T

∑
t=1

XtBt.

For a given couple of tuning parameters (R, λ), the Koh-Lanta algorithm allows to impute the
missing samples using the above algorithm in an iterative way, alternating model building and missing
data prediction. Its specificity is to deal with missing values in the train, in a first part, and in the test
data sets, in a second part. More precisely :

• The Tribe Stage , the train data set imputation:

1. For each block Xt, with missing values, predict the missing values using a mono-block
ddsPLS model taking Y as covariates and Xt as response. Note that non missing samples
are used for training the underlying model.

2. Build the multiblock ddsPLS model with covariate blocks {X1, · · · , XT} and response block
Y. Keep in memory the variables selected in each block.

3. Re-do step 1 with only the selected variables of step 2 as response.

4. Iterate steps 1 and 2 until stabilization of the super-scores.

The model built in step 2 during the last iteration is then used in the following test data set
imputation.

• The Reunification Stage , the test data set imputation :
For each individual i, if there is at least one missing sample, split the train data set in 2 multiblock

data sets. The first one, denoted as B(1)
i , corresponds to the blocks where i has missing values

and the second one, denoted as B(2)
i , to the non missing blocks. The algorithm builds a prediction

model using scores of B(2)
i as covariates and the concatenation of the blocks B(1)

i as response

matrix. The missing values are then calculated according to that model and B(2)
i data can be

projected onto the scores thanks to the train model.

In the following, the ddsPLS package formalism is illustrated on a toy example (based on a real
data).

Build a model of prediction

The "mddsPLS" class allows to build prediction models (including imputation and variable selection).
The mode argument allows to choose between regression or classification. The arguments of that class
are detailed in Table 2.

Illustration on a toy example

To illustrate the use of the package, the liverToxicity data set (see Bushel et al., 2007) is used (n = 64,
p = 3116 covariates, q = 10 response variables). The covariate part has been arbitrarly split in two
blocks denoted as Block_1 and Block_2. Moreover, missing samples have been generated as follows:
the first five samples of Block_1 have been deleted and the next five samples of Block_2 have also
been deleted. This has been done with the following code:
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Argument Description

Xs

A matrix (covariate block), if there is only one block.
A list of matrices, if there is more than one block, of n rows each, the
number of individuals.
Some rows can be missing.
The different matrices (blocks) can have different numbers of columns.
The length of Xs is denoted by T and corresponds to the number of
blocks.

Y
A matrix of n rows or a vector of length n detailing the response matrix.
No missing values are allowed in that matrix.

lambda
A real ∈ [0, 1]. This is a regularization parameter to select variables. The
closer to 1, the less variables are selected. Fix this parameter or L0.

L0
A non null integer which is the largest number of covariates that can be
selected in all the T covariate blocks. Fix this parameter or lambda.

R
A strictly positive integer corresponding to the number of components
to build in the model.

mode

A character chain. Possibilities are ‘reg’, ‘lda’ or ‘logit’, which
correspond respectively to regression problem, linear discriminant
analysis and logistic regression (through functions glm() and lda(),
respectively, from the package MASS). Default is ‘reg’. Note that, for
classification, ‘logit’ does not allow to deal with more than two classes.

keep_imp_mod
Logical. Whether or not to save imputation "mddsPLS" models which are
created in the Koh-Lanta tribe stage imputation step. Default to FALSE. Be
careful because each of the model savings can be memory demanding.

reg_imp_model
Logical. Whether or not to regularize the imputation models. TRUE by
default.

errMin_imput
Positive real. Convergence threshold in the Tribe Stage of the Koh-Lanta
algorithm. Default is 1e− 9.

maxIter_imput
Positive integer. Maximum number of iterations in the Tribe Stage of the
Koh-Lanta algorithm. Default is 5.

verbose
Logical. If TRUE, the convergence progress of the Koh-Lanta algorithm is
reported. Default is FALSE.

NZV Float. The floating value above which the weights are set to 0.

getVariances
Logical. Whether or not to compute explained variances and RV
coefficients of the model. Useful for interpretation but time consuming.
Default is TRUE.

Table 2: Arguments of the class "mddsPLS"

library(ddsPLS)
data("liverToxicity")
X <- scale(liverToxicity$gene)
Xs <- list(Block_1 = X[, 1:1910], Block_2 = X[, -(1:1910)])
Xs[[1]][1:5, ] = Xs[[2]][6:10, ] <- NA
Y <- scale(liverToxicity$clinic)

Let us first illustrate the main function mddsPLS(). For easy readability of the outputs, let us first
consider R = 3 and L0 = 10 . These two parameters will be tuned in the last part via cross-validation
with the specific function perf_mddsPLS().

model <- mddsPLS(Xs = Xs, Y = Y, L0 = 10, R = 3, mode = 'reg')

Some useful outputs

The most important outputs, from the user point of view, are :

• var_selected: the list of the weights and super-weights per block and per component. This
object is useful for technical reasons. The plot method allows helpful visualizations.

• Xs: the list of the covariate blocks imputed with the Koh-Lanta algorithm.

• mod: an object of the class "MddsPLS_core", whose class is described at the end of the paper. It
gathers all the quantities calculated in the algorithm.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=MASS


CONTRIBUTED RESEARCH ARTICLE 6

The summary method

The mddsPLS.summary() S3 method provides useful information divided into several parts:

• the main information about the data and the model, just above the title ddsPLS object
description.

• the description of the quality of association between the scores and the super-scores with the
response variables through two different descriptors (explained variances and RV coefficients
which are defined below).

• the missing value information,

• and an overview of the selection results of the algorithm, for the X and the Y parts, per block
and per component. The complete list of the selected covariates is one of the three most useful
outputs (var_selected) of the model.

The two descriptors (explained variances and RV coefficients) are defined as follows.

• The Explained Variance, in percent, is based on

f : (A, B) −→


∣∣∣∣∣∣A(AT A)

+
AT B

∣∣∣∣∣∣
F

||B||F × 100 if B 6= 0
0 else

,

where ”.→ ||.||F” is the Frobenius norm.

• The RV coefficient generalizes the correlation notion to matrices, see Robert and Escoufier
(1976), can be computed using

g : (A, B) −→
{

Tr(AAT BBT)
Tr(AAT)Tr(BBT)

× 100 if A 6= 0 and B 6= 0
0 else.

.

Those two functions, f and g, are used in the summary method in 4 different ways corresponding
to 4 different association aspects of the built scores with the response variables. In the following list,
the calculations of each of those 4 association descriptors are described.

• Total Y with all the Super Components: this is one single value corresponding to the overall
association of the final super components and the response matrix.

Explained Variance : f (norm2 (T?) , norm2 (Y))
RV coefficient : g (norm2 (T?) , norm2 (Y))

• Total Y variance explained by each Super Component: this is a vector whose length is equal to
the number of components in the model. It allows to evaluate the association of each super
component separately on the response matrix.

∀r ∈ [[1, R]],
Explained Variance : f

(
norm2

(
T?(r)

)
, norm2 (Y)

)
RV coefficient : g

(
norm2

(
T?(r)

)
, norm2 (Y)

)
where A(r) denotes the rth column of the matrix A.

• Marginal Y variable variance explained by each Super Component: this is a matrix with q rows and R
columns that shows the association between each super component and each response variable.

∀(r, j) ∈ [[1, R]]× [[1, q]],
Explained Variance : f

(
norm2

(
T?(r)

)
, norm2

(
Y(j)

))
RV coefficient : g

(
norm2

(
T?(r)

)
, norm2

(
Y(j)

))
• Total Y variance explained by each component of each block: this is a matrix with T rows and

R columns corresponding to the association between each covariate block and each of its
corresponding components.

∀(r, t) ∈ [[1, R]]× [[1, T]],
Explained Variance : f

(
norm2

(
T(r)

t

)
, norm2 (Y)

)
RV coefficient : g

(
norm2

(
T(r)

t

)
, norm2 (Y)

)
The corresponding output of the summary is provided below.
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summary(model)
==============================================================

ddsPLS object description
==============================================================

Number of blocks: 2
Number of dimensions: 3
Regularization coefficient: 10
Number of individuals: 64
Number of variables in Y part: 10
Model built in mode regression
Maximum number of iterations in the imputation process: 50
Algorithm of imputation has converged

Variance Explained (%)
-------------------------------------------
Total Y variance explained by all the Super Components
[1] 67
Total Y variance explained by each Super Component
[1] 60 57 54

Marginal Y variable variance explained by each Super Component
Super Comp. 1 Super Comp. 2 Super Comp. 3

BUN.mg.dL. 69.0 66.0 54.0
Creat.mg.dL. 15.0 18.0 9.2
TP.g.dL. 2.4 1.1 15.0
ALB.g.dL. 16.0 11.0 7.5
ALT.IU.L. 96.0 88.0 84.0
SDH.IU.L. 11.0 21.0 24.0
AST.IU.L. 95.0 85.0 83.0
ALP.IU.L. 38.0 42.0 33.0
TBA.umol.L. 84.0 83.0 90.0
Cholesterol.mg.dL. 66.0 60.0 46.0

Total Y variance explained by each component of each block
Comp. 1 Comp. 2 Comp. 3

Block_1 59 58 0
Block_2 61 54 21

RV coefficient
-------------------------------------------------------
Total Y with all the Super Components
[1] 0.33

Total Y with each Super Component
[1] 0.37 0.32 0.29

Each Y variable with each Super Component
Super Comp. 1 Super Comp. 2 Super Comp. 3

BUN.mg.dL. 0.47000 0.44000 0.3000
Creat.mg.dL. 0.02100 0.03300 0.0084
TP.g.dL. 0.00058 0.00013 0.0220
ALB.g.dL. 0.02400 0.01100 0.0056
ALT.IU.L. 0.93000 0.77000 0.7100
SDH.IU.L. 0.01200 0.04300 0.0590
AST.IU.L. 0.91000 0.73000 0.6900
ALP.IU.L. 0.14000 0.17000 0.1100
TBA.umol.L. 0.71000 0.68000 0.8100
Cholesterol.mg.dL. 0.44000 0.36000 0.2100

Total Y with each component of each block
Comp. 1 Comp. 2 Comp. 3
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Block_1 0.35 0.34 0.000
Block_2 0.37 0.29 0.042

Missing value information
-------------------------------------------

Block_1 Block_2 Total
Number of covariates 1910.00 1206.00 3116.00
Number of missing samples 5.00 5.00 10.00
Proportion of missing samples (%) 7.81 7.81 7.81

mddsPLS results
-------------------------------------------

At most 10 covariate(s) can be selected in the X part

---- For each block of X, are selected
Super Comp. 1 Super Comp. 2 Super Comp. 3

Block_1 4 4 0
Block_2 5 5 1
---- For the Y block, are selected

@ (2,2,1) variable(s)

Thank s for using me
--------------------------------------------------------------

Hadrien Lorenzo
hadrien.lorenzo.2015@gmail.com

==============================================================

In the following, the different visualizations available via the plot function are described.

Visualization of the weights

The weights, Ut, t = 1 . . . , T, computed in the first step of the algorithm, denote the importance of the
marginal interaction between the selected covariates of each covariate block and the response block.

plot(model, vizu = 'weights', mar_left = 3, variance = 'RV')

Figure 2 shows these weights. One can observe that:

• the third component of Block_1 is empty, i.e. no covariate has been selected on this component;

• the other components of Block_1 or Block_2 are all non null;

• the second component of Block_2 is built with only one covariate and has a RV coefficient equal
to 0.29 with the response matrix, which is important for a single covariate;

• all the other components are built with four or five covariates.

Note that only the study of the scaled super-weights, U?
t , t = 1, . . . , T, would allow to compare the

importance of the different covariates from one block to another.

Visualization of the scaled super-weights

The scaled super-weights, U?
t , t = 1 . . . , T, computed in the second step of the algorithm, denote the

importance of each covariate predicting the response block in the first column as shown in Figures 3, 4
and 5. These three figures are respectively obtained with the following code lines:

plot(model, vizu = 'weights', super = T, mar_left = 3, variance = 'RV',
addY = T, pos_legend = NULL, mar_bottom = 3.5, comp = 1)

plot(model, vizu = 'weights', super = T, mar_left = 3, variance = 'RV',
addY = T, pos_legend = NULL, mar_bottom = 3.5, comp = 2)

plot(model, vizu = 'weights', super = T, mar_left = 3, variance = 'RV',
addY = T, pos_legend = NULL, mar_bottom = 3.5, comp = 3)
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Figure 2: Visualization of the weights

One can note that

• the second column denotes the variance shared (according to the RV coefficient in that case)
between the built component and each of the variables of the response block, the variables
which are not selected are plotted in light blue while the selected variables are in dark blue;

• the first two components – Figures 3 and 4 – mainly explain the response variables ALT.IU.L
and AST.IU.L and the third component – Figures 5 – explain the response variable TBA.umol.L
preferentially, using the single covariate selected on component 2 of Block_2 already described
in Figure 2;

• these three response variables are the most described by the current model and the associated
covariates are ranked by increasing importance in the first column of those Figures 3, 4 and 5,
by component.
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Figure 3: Visualization of the scaled super-weights of the 1st component

Heatmaps to visualize individual behaviors along single super-component

The package also allows to draw heatmaps mixing covariates and response variables selected per
components. For example, Figure 6 shows the results for the first and the third super components
generated by the following code lines:

plot(model, vizu = 'heatmap', comp = 1, pos_legend = 'topright',
margins_heatmap = c(1.5, 11))

plot(model, vizu = 'heatmap', comp = 1, pos_legend = 'topright',
margins_heatmap = c(1.5, 11))
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Figure 4: Visualization of the scaled super-weights of the 2nd component
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Figure 5: Visualization of the scaled super-weights of the 3rd component

In these plots, dendrograms have been performed using hierarchical classification based on Ward
distance (see Ward Jr, 1963, for example). In Figure 6, one can observe that

• each heatmap exhibits that individuals are strongly divided in two groups (dendrogram on the
top of the graph);

• for each component, the two groups of individuals are unbalanced. For example, for the first
component, the group of 9 individuals on the right of the heatmap are represented with dark
colors, which is associated with high expression. On Figure 6b, 13 individuals seem to show
high expression, at the far right of the figure, and correlated values.

Correlograms per super-component

Figure 7 represents the correlation matrices grouping covariates selected on components 1 and 3
respectively obtained with the code lines

plot(model, vizu = 'correlogram', comp = 1)
plot(model, vizu = 'correlogram', comp = 3)

Contrary to heatmaps previously presented, the covariates are not ordered thanks to the Ward distance.
This may be an interesting way to present the already discussed points. The value of the correlation
coefficients can be plotted by setting the values_corr parameter to TRUE in the command showed just
above. One can observe in Figure 7 that the variable Cholesterol.mg.dl. is negatively correlated with
other response variables but also with all the covariates.
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Figure 6: Heatmaps of the 1st and 3rd components mixing response and covariate selected per
components and ordered with associated dendrogram. High expressions are represented with dark
colors.
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Figure 7: Correlograms of the 1st and 3rd components mixing response and covariates.

Predict values from a new sample

Based on an existing mddsPLS model, the mddsPLS.predict() S3 method allows to predict, from a new
sample X,

• the response values associated with the new X sample,

• the imputed new X sample (if there are missing values).

Parameter type allows to choose between one of those two prediction types: ‘y’ or ‘x’ respectively
allows the user to predict the response values and the imputed values of the concerned data set. The
case ‘both’ allows to get both of the results in a single list object. In practice this can be done with the
code lines:

y_predict <- predict(model, newdata = Xs, type = 'y')
x_predict <- predict(model, newdata = Xs, type = 'x')
both_predict <- predict(model, newdata = Xs, type = 'both')
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Perform cross-validation

The aim of the "perf_mddsPLS" class is to determine optimal values for the tuning parameters, (R, λ)
or (R, L0), via cross-validation. The arguments of that class are detailed in the Table 3. For sake of
clarity, arguments for which description are filled with “_“ have been already detailed in Table 2.

Argument Description

Xs _
Y _
lambda_min A real in [0,1]. The minimum value of λ considered. Default is 0.

lambda_max
A real in [0,1]. The maximum value of λ considered. Default is NULL,
interpreted as the largest correlation between X and Y.

n_lambda
A strictly positive integer corresponding to the number of λ values to
consider in cross-validation, the λ values are equidistributed between
lambda_min and lambda_max. Default is 1.

lambdas
A vector of λ values (in [0,1]) to consider in cross-validation. Default is
NULL, when that parameter is not taken into account.

R _

reg_imp_model
Logical. Whether or not to regularize the imputation models. Initialized
to TRUE.

L0s
A vector of non null positive integers corresponding to the L0 values to
consider in cross-validation. Default is NULL and is then not taken into
account.

kfolds

Character or integer. If equals to ‘loo’ then a leave-one-out
cross-validation is started. No other characters are understood. Any
strictly positive integer gives the number of folds to make in the
cross-validation process.

mode _

fold_fixed
Vector of length n. Each element corresponds to the number of the
corresponding fold (see details below). If NULL then that argument is not
considered. Default to NULL.

maxIter_imput _
errMin_imput _
NCORES Integer. The number of cores to use (see details below). Default is 1.
NZV _

plot_result
Logical. Whether or not to plot the result. Initialized to TRUE. The
reg_error argument of the plot.perf_mddsPLS() function is left to its
default value.

legend_label
Logical. Whether or not to add the legend names to the plot. Initialized
to TRUE.

Table 3: Argumets of the class "perf_mddsPLS"

The NCORES allows to select the number of cpu that should be used by the software. This is bounded
by the maximum number of cpu that are present on the machine and protected in that way.

The user must choose between λ and L0 to make the regularization/selection. The L0s parameter
is a vector of L0 values to consider in the cross-validation process. Otherwise, for the λ parameters,
the user can whether use

• n_lambda values of λ to consider in the cross-validation process. These values are taken equidis-
tributed in the range corresponding to no covariate to remove on the left and no covariate to add
on the right. lambda_min and/or lambda_max can be used to move those two previous automatic
bounds.

• or lambdas, a vector of λ values to consider in the cross-validation process.

The number of folds in the cross-validation process is fixed thanks to the parameter kfolds, when
that parameter is equal to the number of individuals or if it is equal to ‘loo’, then leave-one-out
cross-validation is performed, otherwise k-fold cross-validation is performed.

Sometimes a more complex case can be encountered when dependant samples are considered
for instance. In that specific context it might be interesting or even necessary to keep some samples
together. The vector parameter fold_fixed of size n must then be used. If the considered data-set is
build on nine samples and the first three must be kept together, as the next three and the last three
ones, then fold_fixed should be equal to:
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fold_fixed <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

Start cross-validation

The following example allows to select, for R = 2 components (value fixed by the user), the best value
for L0 using leave-one-out cross-validation. Only six different values of L0 have been tested, deploying
the calculations on three cores.

cv <- perf_mddsPLS(Xs = Xs, Y = Y, L0s = c(1, 3, 5, 10, 25, 50),
R = 2, mode = 'reg', kfolds = 'loo', NCORES = 3,
plot_result = FALSE)

The summary method

The part of the output denoted as Cross-Validation resultsallows to access to the proportion of
models which have converged against the total number of models built (third column) and also to the
main time statistics in terms of computation time (fourth column) for given R and L0 parameters (first
and second columns respectively).

summary(cv, plot_res_cv = FALSE)
======================================================

Cross-Validation ddsPLS object description
======================================================

Number of blocks: 2
Number of individuals: 64
Number of variables in Y part: 10
Model built in mode regression

Missing value information
---------------------------------

Block_1 Block_2 Total
Number of variables 1910.00 1206.00 3116.00
Number of missing samples 5.00 5.00 10.00
Proportion of missing samples (%) 7.81 7.81 7.81

Cross-Validation results
---------------------------------

R L0 Nb.of.convergences.VS.nb.of.fold Mean.AND.sd.time.of.computation
1 2 1 64/64 0.19(0.025)
2 2 3 64/64 0.21(0.023)
3 2 5 64/64 0.22(0.021)
4 2 10 64/64 0.21(0.02)
5 2 25 64/64 0.22(0.022)
6 2 50 64/64 0.22(0.019)

Thank s for using me
------------------------------------------------------

Hadrien Lorenzo
hadrien.lorenzo.2015@gmail.com

======================================================

In that example, all the models have converged and each model is build in around 0.2s.

The plot method

The plot method allows to plot, for a given value for R, the error curves in the regression case (the
lower the better) and the accuracy curves in the classification case (so the higher the better). In the case
of multivariate regression, it is important to perform the same normalization on response variables as
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to get comparable MSEP (Mean Squared Error in Prediction) curves. As a reminder, MSEP is computed
on the estimation Ŷ of Y such as

MSEP
(
Y, Ŷ

)
= diag

((
Y− Ŷ

)T (Y− Ŷ
))

/n,

where ”.→ diag(.)” gives the diagonal of the square matrix argument. And so, MSEP(Y, Ŷ) is filled
with q elements corresponding to each of the q MSEPs of each predicted variable of Y.

Remark. It is also possible to check the MPE (Mean Prediction Error), the sum of the absolute errors,
using the argument reg_error and putting it to ‘MPE’. The default value is ‘MSEP’ and allows to
appreciate the MSEP error.

As mentionned before, each of the response variables has been standardized (zero mean and unit
variance) such as all error curves would be comparable. Hence, the error would be comparable to 1
above which the model does not perform better than mean prediction, at the limit. The following line
code

plot(cv, legend_names = colnames(Y), pos_legend = 'right', plot_mean = T)

provides Figure 8 which shows the corresponding results. The three well predicted response variables
are the ones already discussed in the model building part. The other variables have a MSEP close to 1
which means that the different leave-one-out model would not perform better than mean prediction.
Two vertical dotted lines represent the value for which the mean of the MSEP curves is minimum
and the minimum value of the q MSEP curves. Both of those minima can be good candidates but it
belongs to the analyst to choose the most suitable parameter, taking into account that also the number
of components must be chosen (and this procedure must be repeated for various values of R). In the
next paragraph, a way to determine simultaneously, thanks to cross-validation,the parameters L0 and
R are provided.
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Figure 8: Cross-validation leave-one-out curve errors for the ten to be predicted variables
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Cross-validation to fix the all parameters

Both of the tuning parameters (R, L0) or (R, λ) of the method can be fixed thanks to cross-validation.
The following code shows how to perform this analysis for (R, L0) using the toy example. Since this
is multivariate regression, it has been chosen to consider the mean of the 10 MSEP of leave-one-out
cross-validation error as a common criterion. No function has yet been implemented to visualize that
error but the following script gives an idea of a feasible solution.

L0s <- unique(round(seq(1, 1000, length.out = 30)))
Rs <- 1:10
mat_means <- matrix(NA, length(L0s), length(Rs))
CVs <- list()
for(r in Rs){
CVs[[r]] <- perf_mddsPLS(Xs = Xs, Y = Y, L0s = L0s,

R = r, mode = 'reg', kfolds = 'loo',
NCORES = 7, plot_result = FALSE)

mat_means[, r] <- rowMeans(CVs[[r]]$RMSEP[, -c(1:2)])
}
data <- expand.grid(Rs, L0s)
data <- cbind(data, as.vector(t(mat_means)))
data.f <- data.frame(data)
names(data.f) <- c('L0', 'R', 'Error')
lattice::wireframe(Error ~ L0*R, data = data.f,

ylab = expression(L[0]), xlab = 'R',
main = 'Mean error',
drape = TRUE,
colorkey = TRUE,
screen = list(x = -90, y = -110),
scales = list( arrows = FALSE)

)
lattice::wireframe(Error ~ L0*R, data = data.f,

ylab = expression(L[0]), xlab = 'R',
main = 'Mean error',
drape = TRUE,
colorkey = TRUE,
screen = list(x = -90),
scales = list( arrows = FALSE)

)
lattice::wireframe(Error ~ L0*R, data = data.f,

ylab = expression(L[0]), xlab = 'R',
main = 'Mean error',
drape = TRUE,
colorkey = TRUE,
screen = list(y = -90, z = -90),
scales = list( arrows = FALSE)

)
r <- 9
Err <- rowMeans(CVs[[r]]$RMSEP[, -c(1:2)])
pos_min <- which.min(Err[which(L0s<200)])
L0_min <- L0s[pos_min]
Err_min <- Err[pos_min]
plot(L0s, Err, ylab = 'Error', main = paste('Mean error for R = ', r),

type = 'l')
points(L0_min, Err_min, pch = 16, col = 'red', cex = 2)
text(L0_min, Err_min,

labels = paste('(', round(L0_min, 2), ', ',
round(Err_min, 2), ')'), col = 'red', adj = -0.3)

Figures 9a, 9b and 9c show the results through 3-dimensional plots of the mean errors along the
10 response variables. It seems that R = 9 and L0 ≈ 78 (red point in Figure 9d) allow to get an
interesting point in terms of prediction error and sparsity, discussions should be conducted with
domain specialists in front of those curves to select the best model.

Since the tuning parameters are now determined, the methods detailed before in the manuscript
can be used to build the model and should help the user to learn more about the data.
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(c) Effect of L0
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Figure 9: Plot of the means of the 10 response variables MSEP’s for cross-validation leave-one-out
analysis.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 17

How to implement the classification case?

Until now, the paper mainly focuses on the regression case. Classification case can also be taken
into account, following Barker and Rayens (2003). It is quite transparent for the user, changing the
argument mode in functions mddsPLS() and perf_mddsPLS() to one of

• ‘lda’, for linear discriminant analysis,

• ‘logit’, for logistic regression (it only works in two-classes classification problems).

Recall also that the cross-validation is monitored through the good classification rate (and not the error
rate as in regression case) which implies to look for maxima on the curves (and not minima as in
regression case).

The hidden class of the package

The user cannot build directly an object of this class because it is protected according to different
aspects corresponding to whether there are missing values and whether L0 or λ is used as a parameter.
This class is then used internally in the Koh-Lanta process. Any object of this class would be an attribute
of the "mddsPLS" class. The attributes of that class are given in Table 4.

Attribute Symbol Description

u (Ut)t∈[[1,T]] A list of length T. Each element is a pt × R matrix.
u_t_super (U?

t )t∈[[1,T]] A list of length T. Each element is a pt × R matrix.
v V? A q× R matrix : the weights for the Y part.

ts
A list of length R. Each element is a n× T matrix : the scores
per component.

( t, s) (T?, S?) Two n× R matrices, super-scores of the X and Y parts.

( t_ort,s_ort)

Two n× R matrices, final scores of the X and Y part. They
correspond to PLS scores of (t,s) scores and so t_ortT s_ort
is diagonal, t_ort, respectively s_ort, carries the same
information as t, respectively s.

B B A list of length T, for the number of blocks. Each element is a
pt × q matrix.

( mu_x_s,sd_x_s)
Two lists of length T, for the number of blocks. Each element is
a pt vector : the mean and standard deviation covariates per
block.

(mu_y,sd_y)
Two vectors of length q : the mean and the standard deviation
variables for Y part.

R R Given as an input.
q q A non negative integer.
Ms (Mt)t∈[[1,T]] A list of length T, for the number of blocks.
lambda λ The regularization coefficient.

Table 4: Attributes of the class mddsPLS_core

Let be supposed that a model Model from the "mddsPLS" class has been created, then one can get
to the corresponding object of the "MddsPLS_core" class such as

Model <- mddsPLS(Xs = Xs, Y = Y, L0 = 10, R = 3, mode = 'reg')
Model_MddsPLS_core_object <- Model$mod
Out <- lapply(Model_MddsPLS_core_object, function(x){
out <- dim(x)
if(is.null(out)){
out <- length(x)

}else{
out <- paste(out, sep = '', collapse = 'x')

}
out

})

The printed command shows the dimension(s) of the attributes of the considered object of the
"MddsPLS_core" class.
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print(do.call(rbind, Out))
[,1]

u "2"
u_t_super "2"
V_super "10x2"
ts "2"
beta_comb "4x2"
T_super "64x2"
S_super "64x2"
t_ort "64x2"
s_ort "64x2"
B "2"
mu_x_s "2"
sd_x_s "2"
mu_y "10"
sd_y "10"
R "1"
q "1"
Ms "2"
lambda "1"

Conclusion

The package ddsPLS allows to solve linear multivariate regression or classification problems in the
context of heterogeneous multiblock data sets for high dimensional data.

The ddsPLS package is simple to use and provides dimension reduction and variable selection
through a computational method based on SVD of correlation matrix soft-thresholding. Computation
time has been reduced thanks to C++ functions using the Rcpp package. A cross-validation function
using parallel computations has also been included in that package thanks to the doParallel, parallel
and foreach packages. Different S3 methods allow to visualize model specificities (through barplots,
heatmaps or correlogram) and cross-validation performances.

Classification case analyses are performed thanks to lda() or logit() functions (from the MASS
package), those functions are based on the ddsPLS objects built on the regression multivariate models
predicting the dummy matrix generated from the class response.
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Included data sets

Two data sets are included in the package and correspond to

• a regression problem, through the liverToxicity data set. This data set contains the expression
measure of 3116 genes and 10 clinical measurements for n = 64 subjects (rats) that were
exposed to non-toxic, moderately toxic or severely toxic doses of acetaminophen in a controlled
experiment (see Bushel et al., 2007).

• a classification problem. The data set penicilliumYES has 36 rows and 3754 columns. The
covariates are 1st order statistics from multi-spectral images of three species of Penicillium
fungi: Melanoconidium, Polonicum, and Venetum (see Clemmensen et al., 2011).
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