
Imputation for supervised learning problems in high dimension
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Introduction
The problem of missing data often occurs in data analysis. Missing val-

ues of the type MAR (Missing At Random) are cosidered here. Then, the

probability that a value is missing depends on one or multiple observed vari-

ables. Most modern algorithms focus on this type of missing values, and the

most used implementations are certainly MICE, missForest, missMDA, or

k-Nearest Neighbors imputations. To take into account sampling variability,

it is better to propose M values for each missing value instead of a sin-

gle one. This so-called “multiple imputation” procedure allows to provide

proper imputation, in contrast to improper imputation. In practice, M = 5
is often sufficient. Most of the existing methods are not well suited to the

high dimensional context, when the sample size n is much lower than the

number of variables p, often symbolized as n << p. In supervised analysis,

the dependent variable y must be explained by the explanatory variable x.

This implies that the part of x associated with y can be hard to find, when

the classical imputation methodologies suffer. In this communication, a new

methodology, called Koh-Lanta, is presented. This methodology is able to

deal with missing values in a supervised context, using multiple imputation,

and tackling the high dimensional issues. For the sake of simplicity, missing

values are considered only in the x part.

SoA: Joint modelling: PPCA and MICE
The PPCA[4] (Probabilistic PCA) model writes in our case as

(
x

y

)
= µ +Wt + ε,

where W is deterministic, t ∼ N (0, IR), R the number of components and

ε ∼ N (0, σ2Ip+q). Then

(
x

y

)
|µ,W, σ2 ∼ N

(
µ,WW⊤ + σ2Ip+q

)
.

WW⊤ + σ2Ip+1 =

(
a1 + σ2 A(1)(−1,y)

A⊤
(1)(−1,y)

A−1,y + σ2Ip

)
is invertible with q = 1.

The conditional parameters write:

µ1|−1,y = µ1 +A(1)(−1,y)

(
A−1,y + σ2Ip+1

)−1 [
(x−1, y)

⊤ − µ−1,y

]
,

σ21|−1,y = a1 + σ2 −A(1)(−1,y)

(
A−1,y + σ2Ip

)−1
A⊤

(1)(−1,y),

• In high dimension, the evaluation of R would be underestimated practi-

cally hiding the subspace common to x and y.

• In supervised context, the objective is to describe y|x, which is a condi-

tional context, the joint analysis does not therefore seems appropriate.

An other approach not based on joint modeling has been proposed and

widely used in the literature, the MICE [1] approach: estimate for each vari-

able with missing values the fully conditional regression model.

=⇒ Same problem!

Our proposition: “Koh-Lanta” , a “blocked Gibbs” solution
In order to estimate less parameters, our idea is to impute missing values of xi,m based solely on the

response yi and a currently computed conditional model xi,m|yi,θx|y.

In order to take into account sampling variability and additive error model, we use a proper imputation

approach with additive error sampling. The current section details a generalized version of the “MI-

NIPALS” based on the estimation of the tuple (θy|x,θx|y). This algorithm is called “Koh-Lanta” .
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Schematic view of the “ ” algorithm.Step name Input Output Comments

Estimation of θx|y S⋆ θ̂x|y From the bootstrapped sample S⋆, evaluate θ̂x|y.

Improper imputation of S S, θ̂x|y S̃ -

Improper imputation of S⋆ S⋆, θ̂x|y S̃⋆ -

Estimation of Σ S⋆, Ŝ⋆ Σ̂ From non missing values, comparing S⋆ and S̃⋆.

Generation of ǫ S⋆, Σ̂ ǫ̂ -

Proper imputation of S S, θ̂x|y, ǫ̂ S̃ -

Estimation of θy|x S̃ θ̂y|x θy|x is estimated on the completed dataset.

ddsPLS [3] to estimate θy|x and θx|y
ddsPLS (data-driven sparse PLS) is a PLS flavored approach and insures variable selection both in X and

in Y with a single regularization coefficient per component:

∀r ∈ [[1, R]]


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′
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(e) X(r+1) = X(r) − trp
′
r, Y

(r+1) = Y(r) − trc
′
r.

with M(r) = Y(r)′X(r)/(n− 1) and ∀x ∈ R, Sλ (x) = sign(x)max(0, |x| − λ).

Simulation setting
Benchmark approaches
• “MI-NIPALS” NIPALS algorithm. R ∈ [[1, 5]] and LOO prediction error.

• “NIPALS” uses the NIPALS algorithm for simple imputation.

• “MEAN-PLS” Imputes missing values to mean. Then build PLS model.

• “missMDA-PLS” MI with PPCA[2]. Then build PLS model.

Simulation schema: p = 2p1 + p2 + p3, q = 3 and σ =
√
0.1:

xj =





√
1− σ2φ1 + σǫj for j = 1..p1√
1− σ2φ2 + σǫj for j = p1 + 1..2p1√
1− σ2φ3 + σǫj for j = 2p1 + 1..2p1 + p2

ǫj for j = 2p1 + p2 + 1..2p1 + p2 + p3





y1 =
√
1− σ2φ1 + σξ1

y2 =
√
1− σ2(φ1 + 2φ2)/

√
5 + σξ2

y3 = ξ3

where (φ⊤, ǫ⊤1...p, ξ
⊤
1...3)

⊤ ∼ N3+p+q (0, I), variables x1..2p1
to be selected.

Simulation results
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• “missMDA-PLS” and “Koh-Lanta (in ddsPLS LD)” win.
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• “Koh-Lanta (in ddsPLS)” and “Koh-Lanta (in ddsPLS LD)” win.

• “missMDA-PLS” overfits more from low to high p3 and large pNA.
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• ddsPLS’s difficulty to deal with intricate variables.

Conclusion
• Mean imputation fails again,

• Joint Modelling imputation seems to fail in high dimension,

• Koh-Lanta seems deal with NA in high dimension, but how to make the

difference ?
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